
CodeTree: A System for Learnersourcing Subgoal Hierarchies
in Code Examples
HYOUNGWOOK JIN, School of Computing, KAIST, Republic of Korea
JUHO KIM, School of Computing, KAIST, Republic of Korea

Fig. 1. Our learnersourcing workflow for generating subgoal hierarchies. For each code example, learners in
the Generation task generate the code groups and subgoal labels that can constitute a subgoal hierarchy. Our
hierarchy generation algorithm aggregates the code groups into a multi-level goal structure. Learners in the
Selection task receive the goal structure and pre-populated subgoal labels to vote for the best subgoal labels
for each subgoal in the hierarchy.

Subgoal-labeled code examples help learners understand code patterns and apply them to different problem
contexts. Subgoal labels are multi-level in nature and based on goal structures that define the hierarchical
functional units in code. Data-driven methods and experts can supply the goal structures, but they do not
work in environments with scarce data and limited availability of experts. Previous research has shown that
learnersourcing is effective for sourcing high-quality subgoal labels of given goal structures. We extend this
research by learnersourcing goal structures themselves, thereby making the generation of subgoal-labeled
materials fully learner-driven. We introduce CodeTree, a system that generates multi-level goal structures by
aggregating learner-generated subgoals from two subgoal learning activities—Generation and Selection. In a
between-subjects study, 45 novices studied three code examples with either CodeTree or code explanations
alone. The results showed that CodeTree could learnersource high-quality goal structures and subgoal labels
for all three examples with just five learners. Learners reported a significantly higher learning gain and
satisfaction compared to the baseline.

Authors’ addresses: Hyoungwook Jin, jinhw@kaist.ac.kr, School of Computing, KAIST, Daejeon, Republic of Korea; Juho
Kim, juhokim@kaist.ac.kr, School of Computing, KAIST, Daejeon, Republic of Korea.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/XXXXXXX.XXXXXXX

2 Hyoungwook Jin and Juho Kim

CCS Concepts: • Human-centered computing → Collaborative and social computing systems and
tools.

Additional KeyWords and Phrases: crowdsourcing, education/learning, artifact or system, quantitativemethods

ACM Reference Format:
Hyoungwook Jin and Juho Kim. 2023. CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code
Examples. 1, 1 (October 2023), 36 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Programming is becoming one of the most valuable skills to learn. As the programming population
grows, online resources such as documentation, how-to videos, and Q&A websites have become
popular for learning and help-seeking 1. Code examples are typical materials used in programming
learning resources. Code examples are short code snippets that demonstrate instantiations of code
patterns under specific problem contexts (e.g., calculating the average value of coins in a pocket).
Since the exemplified problem contexts are often different from the diverse problem contexts
that programmers face in practice (e.g., calculating the average of positive values in an array) [63],
practitioners and learners need to spot and modify parts of code examples to adapt them to their
problem contexts. Hence, the educational purpose of code examples is not to have learners simply
copy code, but to reduce their cognitive load and provide the means to learn and transfer code
patterns to novel problem contexts [16].

Fig. 2. A subgoal can group a set of related code lines by their function. The subgoals on the left of the
hierarchy are coarse-grained goals that explain high-level functions that span multiple lower-level subgoals
(or code lines). The subgoals on the right are fine-grained goals that explain the code line by line.

Education research has shown that learning subgoals in code examples can effectively scaffold
learners’ transfer to novel problems [6, 7, 20]. Subgoals are functional units that divide code into
smaller pieces and help learners navigate code to find the part to modify for different problem
contexts. Subgoals often form a hierarchy with high-level strategic goals and low-level constituent
goals comprising the high-level goals. A subgoal hierarchy refers to a hierarchical organization of
subgoals in code and consists of a goal structure and subgoal labels (Fig. 2). Subgoal hierarchies are
used to explain the function of each part of code [37, 45], to create the materials for diverse learning
activities [15, 36], and to generate adaptive explanations [26]. Goal structures are a fundamental

1https://insights.stackoverflow.com/survey/2018

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/XXXXXXX.XXXXXXX

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 3

component of subgoal hierarchies to facilitate these learning supports as they set the frameworks
for organizing and mapping subgoals to code.

The generation of goal structures has been dependent on expertsourcing and data-drivenmethods.
Conventionally, instructors and domain experts take an iterative process to generate subgoals [10],
but this is limited in terms of scalability as the process is time-consuming. To overcome the
limitation, data-driven methods have been applied to learning environments where large code
datasets are available (e.g., Scratch) [5, 41, 49]. These methods compare learners’ code submissions
for a problem at scale and identify common code patterns as subgoals of the problem. However,
data-driven methods do not work in learning environments where code data per code example
is scarce. For instance, although StackOverflow has many code examples, more than half of their
questions are answered with less than ten code examples, which is not a feasible scale to adopt
data-driven approaches [3].
To support the subgoal learning of code examples in ubiquitous environments, we propose

using learnersourcing to generate goal structures without dedicated experts or large-scale code
data. Learnersourcing is a scalable crowdsourcing technique that leverages learners’ creativity and
knowledge to create learning resources for future learners [52, 61]. Prior research has shown that
learnersourcing could effectively reduce experts’ effort in subgoal label generation by offloading
certain tasks to learners [15, 61]. We extend this line of research further by proposing an approach
to also offload the effort of generating goal structures to learners. Compared to learnersourcing
of subgoal labels, generating goal structures is new and challenging because it has to build the
structure from scratch while label-sourcing works on top of a given structure. Despite the challenge,
learnersourcing of goal structure is fundamental to prior subgoal label generation approaches for
making the generation of subgoal hierarchies completely learner-driven and scalable in data-scarce
environments.
We built a prototype system, CodeTree, to investigate the feasibility of learnersourcing the

generation of goal structures without expert intervention. CodeTree is a tool for studying code
examples by carrying out two learning activities that ask learners to either 1) group code lines
into subgoals or 2) vote for the best explanations as the subgoal of a given code. These activities
elicit self-explanation of goal structures as learners should make sense of the relationship between
code and the subgoals they make or vote on. CodeTree leverages learners’ responses to these
activities to generate and control the quality of multi-level goal structures and subgoal labels. After
enough learners’ responses are populated, CodeTree algorithmically aggregates learners’ partial but
complementary subgoals to generate comprehensive multi-level goal structures (Fig. 2). Although
our main aim is to construct goal structures for code examples, we added the features for collecting
subgoal labels to the system to support end-to-end subgoal hierarchy generation.
We evaluated the feasibility of CodeTree for learnersourcing subgoal hierarchies. Our evalua-

tion study with 45 Python novices showed that 1) CodeTree could learnersource correct subgoal
hierarchies for three code examples with just five learners, 2) studying code examples with Code-
Tree resulted in a higher learning gain in code tracing skills (with standardized effect sizes of
around 0.7) and higher satisfaction than with explanations of code alone, and 3) the user interfaces
and visualizations in CodeTree helped learners understand and generate subgoal hierarchies by
enhancing the visibility of the mapping between subgoals and code, and by providing an overview
of the subgoal hierarchies.

Our primary contributions are summarized as follows:

• A learnersourcing workflow and algorithm for generating multi-level goal structures of code
examples.

, Vol. 1, No. 1, Article . Publication date: October 2023.

4 Hyoungwook Jin and Juho Kim

• CodeTree, a system that embeds the workflow and provides user interfaces that visualize
subgoal hierarchies to scaffold generating and learning of subgoals in code examples.

• Empirical evidence that CodeTree can populate high-quality subgoal hierarchies with just
five learners while improving their code tracing skills and learning satisfaction.

2 RELATEDWORK
This research aims to support the adoption of subgoal learning on code examples at scale. We use
learnersourcing as an approach to generate goal structures needed for subgoal learning in learning
environments where experts and data are scarce. This section reviews previous literature on 1)
subgoal learning and its practices, and 2) learnersourcing systems of different forms.

2.1 Subgoal Learning
A subgoal refers to a conceptual action or state that is found in the process of achieving a higher
level (sub)goal in problem-solving [11]. Subgoals organized in hierarchies provide a useful mental
model of task structures for decomposing tasks into subtasks [6]. Subgoal learning is a pedagogy
that teaches learners to discern task structures and constituent subgoals in worked examples so
that learners can modify and apply the task structures to novel problems [9].
Early research on subgoal learning focused on finding effective presentations of subgoals in

mathematics and physics worked examples. Catrambone showed that subgoal labeling, which adds
subgoal labels to worked examples, can scaffold learners’ transfer from worked examples to novel
problems [6, 9, 11]. Catrambone also tested different variants and found that visual isolation of
steps and problem-independent subgoal labels can elicit the transfer even further [7, 8].

Later subgoal learning research primarily took place in the programming domain and looked into
the different learning effects in depth. Margulieux and Catrambone found that subgoal-oriented
instructional materials in programming improve learners’ problem-solving performance [35, 37].
Margulieux et al. applied subgoal learning frameworks to introductory programming courses for a
semester and found that subgoal-labeled materials also increase learners’ retention of knowledge
and courses [39, 40]. They also looked into the usefulness of learners’ self-explanations of subgoals
during initial problem-solving and observed that self-explanations are as useful as expert-generated
labels [34]. Ericson et al. used subgoal labels in Parsons problems to make them more effective for
testing learners’ performance and understanding of code structure [19].
Researchers also studied subgoal learning in different activity types. Based on Chi’s active-

constructive-interactive framework of learning [13], the constructive method of subgoal learning,
in which learners learn by creating subgoal labels by themselves, has been proposed and investigated.
Compared to the passive and active methods that give learners expert-generated subgoal labels, the
constructive method can help learners acquire more transferrable knowledge by promoting creative
thinking and self-explanation. Extensive research has shown that the learners who practiced
the constructive method outperform learners with either passive or active methods for basic
programming and app inventing tasks [36, 44, 45].

Our work is founded on the findings in the previous research. Since we want our learnersourcing
tasks to be pedagogically meaningful, we followed the constructive and active methods of subgoal
learning to design our tasks. Hence, one of our evaluation metrics is howmuch our system replicates
the previous pedagogical effects. By learnersourcing goal structures, we envision that our system
will enable the application and investigation of subgoal learning in broader environments.

2.2 Active Learnersourcing
Learnersourcing is a type of crowdsourcing that leverages learners’ responses in their learning
activities to generate meaningful data for future learners [27]. Learnersourcing has advantages over

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 5

expertsourcing in terms of scalability because it can draw a workforce from large-scale learning
environments, such as MOOCs and Q&A websites, and learners are often motivated to participate
in learning activities without monetary rewards. In return, learnersourcing requires reliable quality
control mechanisms on learner-generated data because learners are inherently less knowledgeable
than experts. For effective quality control, learnersourcing often accompanies majority voting [1, 29]
and automated-methods [48].

There are largely two types of learnersourcing—passive and active—depending on how data are
generated. Passive learnersourcing uses readily acquirable data from natural learning processes,
such as learners’ interaction logs and code submissions [25, 28]. Since the data size is often large,
automated methods are used to analyze and create meaningful learning supports [49, 60]. When
target data is not readily available, active forms of learnersourcing are used. Active learnersourcing
adds new learning activities to conventional learning processes to ask learners to generate specific
data [23, 42, 62, 64]. One of the challenges in active learnersourcing is to design the activities to be
pedagogically meaningful and easy to attempt to encourage the voluntary participation of learners.
The activity designs often follow well-defined pedagogies and microtask workflow to improve the
learning experience and reduce learners’ workload.

There has been research on using active learnersourcing to generate subgoal labels for how-to-
videos, mathematics, and algorithmic problem-solving. Crowdy [61] learnersourced subgoal labels
for how-to videos by periodically asking learners to self-explain the goals of video sections while
watching. Crowdy used a generate-evaluate-proofread workflow to divide the label generation
process into manageable microtasks and to ensure the quality of subgoal labels through multiple
checks. SolveDeep [26] gathered solution graphs of mathematics problems by asking learners to
group the steps in their solutions by subgoals and explain them. Collected solution graphs are
then used to generate feedback on subgoals that future learners make. AlgoSolve [15] used active
learnersourcing to collect subgoal labels of code for algorithmic problem-solving. AlgoSolve used a
vote-label workflow to familiarize learners with high-quality subgoal labels first. Collected subgoal
labels are used to scaffold future learners to plan their solutions.
Our work extends the line of research on learnersourcing subgoals. Previous learnersourcing

systems have focused on generating subgoal labels for goal structures that experts pre-defined.
Although these systems successfully reduce experts’ burden to complete subgoal hierarchies, their
scalability depends on experts creating goal structures because the creation of goal structures
needs to precede subgoal labeling. Our work empowers previous label-sourcing systems to be truly
scalable with a learnersourcing workflow and coordination algorithms for making the generation
of subgoal hierarchies fully learner-driven.

3 DESIGN GOALS
Based on prior work, we set three design goals for learnersourcing goal structures and supporting
subgoal learning of code examples. Our design goals touch upon the type of subgoal hierarchies to
generate, learnersourcing workflow design, and a versatile visualization to help learners generate
and learn subgoal hierarchies.

G1. Generate multi-level goal structures.
Theoretically, a code example can have multiple instances of goal structures. Goal structures

may vary in the granularity of constituent subgoals and depth. Among the many possible instances,
we specifically aim to generate multi-level goal structures that are useful for subgoal labeling [35],
self-explanation activities [15, 36], and feedback generation [26]. Having multi-level goal structures
is especially useful for making these use cases more adaptive to learners. For example, learners

, Vol. 1, No. 1, Article . Publication date: October 2023.

6 Hyoungwook Jin and Juho Kim

with prior knowledge can receive feedback and questions for high-level subgoals, while less-
experienced learners can start with low-level subgoals to understand smaller code patterns. Previous
studies also showed that single-leveled subgoals hardly fit all learners with diverse background
knowledge [7, 8, 17, 50]. Hence, to maximize the sensitivity of the levels and their benefits, we
aim to populate subgoals at as many levels as possible and organize them into multi-level goal
structures.
G2. Divide the generation task into microtasks while not compromising the learning
objective.
Generating multi-level subgoal hierarchies from scratch is a complex task that may frustrate

individual learners. In crowdsourcing literature, dividing a complicated task into manageable
microtasks is shown to reduce cognitive demand and improve crowd workers’ performance [4, 31].
When designing microtasks in learnersourcing, one of the key considerations is to keep the size
of the microtasks small enough so that learners can easily attempt it, but at a level that does not
compromise the learning objective [52]. For example, one possible microtask design is to assign
learners different parts of code to generate multi-leveled subgoals. However, this may compromise
the learning aspect of seeing code examples, as learners will not get enough chances to understand
the entire code. Hence, we aim to break the hierarchy generation task into manageable units but
ensure that each microtask helps learners skim and understand entire code examples.
G3. Provide learners with a visualization for an overview of subgoal hierarchies.

Subgoal hierarchies are complex data structures that connect code, goal structures, and subgoal
labels (Fig. 2). Learners are not typically familiar with generating such complex subgoal hierarchies.
Previous crowdsourcing research showed that visualizing the overview of worker-generated data
improves their performance and efficiency in complex annotations and graph generation [24, 31, 56].
Visualization of subgoal hierarchies during subgoal generation tasks can also alleviate learners’
difficulties by raising awareness of the data they generate and possibly improve. The visualization
can also aid in learning the organization of the goal structures and how each subgoal instantiates
to a specific code. Hence, we aim to add a versatile visualization that can scaffold both generation
and learning of subgoal hierarchies to our interface.

4 SYSTEM
We built CodeTree, a learnersourcing system that generates high-quality subgoal hierarchies
while supporting subgoal learning of code examples. Learners can use CodeTree to enhance their
understanding of existing code examples by either generating subgoals of the code on their own
(Fig. 3) or selecting the best descriptions for given subgoals (Fig. 4). After populating enough
subgoals from learners, CodeTree algorithmically aggregates the subgoals into comprehensive
subgoal hierarchies. The following subsections describe the user workflow, interfaces, and our
algorithm in detail and explain how they achieve the three design goals.

4.1 Microtasks for subgoal learning
We divided the hierarchy generation task into two microtasks—Generation and Selection—taking G2
into account (Fig. 1). In Generation task, learners self-explain subgoals of code examples by grouping
code lines into functionally meaningful units and describing each unit. In Selection task, learners
solve multiple choice questions (MCQs) that ask for selecting the best label for each subgoal. We
chose Generation and Selection tasks as our microtasks because each task follows the constructive
and active methods of subgoal learning [13, 36]. Each task is complete on its own in terms of
helping learners explore the entire code while dividing learners’ workload to generate complete
subgoal hierarchies from scratch.

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 7

4.1.1 Microtask 1: Generate code groups and subgoal labels. In Generation task, learners self-explain
the functions of each part of code by generating subgoals on their own. Learners first read problem
statements and code examples to check problem contexts and solutions. Then, learners use the
hierarchy generation interface to generate and organize subgoals. Learners can generate subgoals
by 1) creating an empty subgoal either at the root or below other subgoals at Fig. 3 (C), 2) clicking
lines of code at Fig. 3 (B) to add to the subgoal as a group, and 3) write a subgoal label that explains
the group at Fig. 3 (C). Although learners do not receive feedback on their subgoals, Generation
task can be helpful as learners explicitly self-explain functions and structures of code [34, 54].
Through Generation task, CodeTree collects diverse code groups (i.e., groupings of code lines)

and subgoal labels. Each learner outputs a list of code groups and subgoal labels. We expect the
lists to reflect learners’ diverse perspectives [50] and contain subgoals at different levels that can
serve as the basis for generating multi-leveled hierarchies (G1).

Fig. 3. The user interface for the generation task: (A) Instructions and problem statement, (B) A code example
to study. Learners can click and select lines of code to make a code group (currently selected lines are
highlighted in orange). Code lines are dimmed to gray and become unselectable if they are either already
grouped or outside of parent subgoal scopes, (C) Hierarchy generation interface. Learners can write down
subgoal labels for each code group and can add lower-level subgoals.

4.1.2 Microtask 2: Select subgoal labels that best explain constituent code groups. In Selection task,
learners self-explain the function of each code group in a given goal structure by selecting the best
descriptions. Similar to Generation task, learners first read problem statements and code examples.
Then learners answer a series of MCQs given by CodeTree to check their understanding of the code.
Each MCQ has at most three options to choose from, and learners can add a new one if none looks
plausible or if there is a better description. After solving each question, learners receive corrective
feedback on their answers (Fig. 4 (C)) to confirm their understanding of the code. Colored bars

, Vol. 1, No. 1, Article . Publication date: October 2023.

8 Hyoungwook Jin and Juho Kim

(Fig. 4 (B)) visualize given subgoal hierarchies and highlight positions of code groups asked by
MCQs (G3).

Each MCQ has two answers and a distractor (wrong answer). CodeTree generates MCQs based
on the learner-generated subgoal labels from Generation task. The answers are chosen from the
subgoal labels that previous learners created for the code group being asked. The distractor is also
chosen from learner-generated subgoal labels but from another random code group that is mutually
exclusive. CodeTree selects distractors based on our heuristic assumption that previous learners
would not write interchangeable subgoal labels for two mutually exclusive code groups. We regard
choosing two answer options as a multi-armed dueling bandit problem [65] and use a round-robin
and greedy algorithm to balance the exploration for good labels and the provision of the best labels
known so far. The reward of the problem is defined as whether learners select either of the answer
options.

Fig. 4. The user interface for the selection task: (A) Instructions and problem statement, (B) A code example
to study. Parts of code being asked in the MCQ are highlighted in orange, (C) A MCQ problem and its options.
When learners select options and click the “Next” button, our system provides corrective feedback on their
selection.

4.2 Colored bar visualization to overview subgoal hierarchies
Our system also provides a novel visualization of subgoal hierarchies through color-coding of code
scope and labels to overview goal structures and adapt flexibly to different code formats and deeply
nested structures. We adopted the visualization to the user interfaces of both microtasks (Fig. 3 (B)
and Fig. 4 (B)). Each colored bar beside code examples represents a code group. The vertical position
of a bar indicates the code lines that it groups. For example, the red bar in Fig. 3 represent a code
group for line 2 and 3. The horizontal position of a bar indicates the level it belongs to in a hierarchy.
The red bar is at the second level under the green bar that groups line 2 to 8. The color-coding of
bars maps each subgoal to a specific part of code examples and reduces the split-attention effect by
serving as a visual link between the spatially distant code and subgoal labels [21, 22].

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 9

Colored bars collectively outline the goal structures and help learners overview them (G3). In
Generation task, colored bars support learners in coordinating overall goal structure by informing
learners at which position and level they create subgoals. Learners can also check the bars to
easily spot which part of code examples they have not annotated with subgoals. In Selection task,
colored bars serve as a navigator to traverse goal structures deeply nested with many constituent
subgoals. Learners explore the goal structure by preorder traversal and receive MCQs that ask
about increasingly specific code groups. Learners can also refer to parent or child code groups to
select the right level of subgoal explanations in MCQs.
The visualization is designed to present complex mapping between subgoal hierarchies and

code. Code examples that are subgoal-labeled at their creation are written in a way that clearly
shows goal structures from code. Inline comments or visual isolation can easily present subgoal
hierarchies of such code examples. However, in order to make our visualization applicable to more
general code examples beyond the pre-formatted code examples, we made the visualization flexible
to work for possibly complex structures and mappings. For instance, lines 4 and 6 in Fig. 3 may form
a meaningful code group despite not being contiguous. While the comment-based presentation
does not work for these non-contiguous code groups, our visualization can pinpoint code lines and
group them.

Algorithm 1 A hierarchy generation algorithm
Input: 𝐼 : A list of Tuple(code group, subgoal label)
Step 1: merge tuples with identical code groups
𝑈 ← an empty list
for each Tuple(code group 𝐺 , subgoal label 𝐿) in 𝐼 do
if 𝑈 has a tuple containing 𝐺 do
add 𝐿 to the existing tuple

else do
add Tuple(𝐺 , 𝐿) to𝑈

end if

Step 2: calculate priority of each code group
for each code group 𝐺 in𝑈 do
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐺 ← occurrence number of 𝐺 in 𝐼

Step 3: sort code groups by their priority
sort𝑈 by 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦

Step 4: populate as many code groups in a hierarchy
𝐻 ← an empty hierarchy
for each Tuple(code group 𝐺 , subgoal labels 𝐿) in𝑈 do
if 𝐺 does not conflict with 𝐻 do
add 𝐺 and 𝐿 to 𝐻

end if
Output: 𝐻

4.3 Workflow and algorithm for generating multi-leveled hierarchies
Our learnersourcing workflow is organized by the two microtasks and a hierarchy generation
algorithm (Fig. 1). Learner-generated subgoals from Generation are the seed for our algorithm to

, Vol. 1, No. 1, Article . Publication date: October 2023.

10 Hyoungwook Jin and Juho Kim

generate initial subgoal hierarchies. The generated hierarchies are fed to Selection to refine subgoal
labels.

The hierarchy generation algorithm (Algorithm 1) is based on two assumptions:
A1. Most learners can identify correct individual subgoals although they may lack the ability to

identify an entire hierarchy.
A2. Learners can recognize complementary levels of subgoals so that their collection will be

comprehensive enough to make complete subgoal hierarchies.
Based on these assumptions, the algorithm first calculates the priority of each code group by

their submission count. Then, the algorithm uses the priority values to decide which subgoal to
add to the subgoal hierarchy in case of conflicts (see Fig. 7). The algorithm keeps adding subgoals
without conflicts until it achieves complete hierarchies.

Before being fed to Selection task, generated subgoal hierarchies undergo post-processing. Code-
Tree removes the poor subgoal labels that are too lengthy, that start with non-verbs, or that are
textually similar to other subgoal labels. For measuring textual similarity, we divided texts into
morphemes [30] and computed the Sørensen–Dice coefficient [55] between the morphemes. To
make subgoal hierarchies complete, CodeTree also adds code groups to the leaf positions where
subgoals are missing from the input. In Selection task, learners generate the labels for these new
code groups.

5 STUDY DESIGN
To evaluate the feasibility of CodeTree for the three design goals, we recruited 45 programming
novices to run a between-subjects study with three conditions—Baseline, Generate, and Select.
The conditions differed in the methods of studying code examples. Generate condition participants
studied code examples by doing Generation task; Select condition participants studied code exam-
ples through Selection task; Baseline condition participants studied code examples with detailed
explanations only. Through this study, we explored three research questions that link to each design
goal.

RQ1. Can CodeTree learnersource correct and comprehensive subgoal hierarchies?
RQ2. Do learners find Generation and Selection tasks helpful for learning and manageable to do?
RQ3. Does the colored bar visualization help understanding and generation of subgoal hierarchies?

5.1 Participants
The target users of CodeTree are programming learners who have learned basic Python syntax
but struggle to write code themselves to solve problems. We recruited 45 participants who 1) took
an introductory Python programming class only, 2) did not score perfectly in our pre-test, and 3)
experienced moderate intrinsic cognitive (below 19 out of 30) during the study. The participants
were recruited on campus and from online communities with a compensation of 20,000 KRW
(approximately 17 US dollars) for a 90-minute session. The participants were randomly assigned to
one of the three conditions (Baseline, Generate, and Select). We confirmed that there was no statisti-
cally significant difference in participants’ initial knowledge (pre-test scores) between conditions
(one-way ANOVA, 𝐹=0.89, and 𝑝=0.42).

5.2 Procedure and Materials
Throughout the sessions, participants learned the usage of while-loops in Python through three code
examples and practice problems isomorphic to the examples. We referred to the study procedures
and materials from previous studies on subgoal learning [36, 45]. The code examples, the problems

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 11

Table 1. Demographic averages for 45 participants and the correlation of each characteristic with participants’
performance score.

Mean/
proportion

Std.
deviation

Pearson’s correlation
with performance score
r p

Gender 19 female - 0.14 0.30
Age 21.73 3.84 -0.29 0.15

Year in college 2.82 3.84 0.31 0.13
Comfort with programming

(1:Not comfortable at all - 7: Very comfortable) 3.69 1.13 0.01 0.48

Expected difficulty for learning programming
(1: Very difficult - 7: Very easy) 3.44 1.02 0.33 0.11

Table 2. The outline of the study and the time allotted to each step.

Step (min.) Baseline (15 participants) Generate (15 participants) Select (15 participants)
1 (8) Introduction + Informed consent
2 (3) Demographic questionnaire
3 (5) Pre test
4 (10) Analogy training Subgoal training

5 (30)
Study 3 code examples
with explanations

+ Solve 3 practice problems

Generation tasks on
3 code examples

+ Solve 3 practice problems

Selection tasks on
3 code examples

+ Solve 3 practice problems
6 (3) Cognitive load measurement
7 (20) 4 Assessment problems
8 (5) 1 Parsons problem
9 (5) Post test (identical to pre test)
10 (-) Post survey

for pre & post-tests, practice, and assessment were identical to the materials used in the between-
subjects study of Margulieux et al. [36], except that the materials were rewritten in Python (see
Appendix A.). We chose Python for our programming language because Python was the most
popular among our recruitment targets. All participants were accessible to review materials that
briefly explained basic syntax and concepts of Python. The instructions and the user interface were
localized into Korean to avoid confusion or unnecessary difficulties.

The example learning steps (steps 4 and 5 in Table 2) were different by conditions. Participants in
Generate and Select conditions received tutorials about subgoal learning and usage of each feature of
our user interface. The tutorial included the learning benefits of subgoal learning, exemplar subgoal
labels on simple math equation solving, and subgoal-making exercises with answer labels at the
end as corrective feedback (Fig. 5 Right). The example subgoal labels were all problem-independent,
implicitly guiding participants to write problem-independent subgoal labels. Baseline participants
received analogy training, which exerts cognitive load comparable to the subgoal training in other
conditions [45]. Generate and Select participants used respective interfaces in Fig. 3 and Fig. 4 to
study code examples. Baseline participants used another interface that removed subgoal-related
features (Fig. 5 Left).

, Vol. 1, No. 1, Article . Publication date: October 2023.

12 Hyoungwook Jin and Juho Kim

The code examples in all three conditions were presented with line-level explanations of the code.
We added the explanations to help participants understand the code and to simulate typical Q&A
websites and documentation where explanations of code are present. We used the latest Codex AI
model [12] to generate the explanations in consideration that it is the most readily available method
for providing detailed explanations of code at scale [33]. The first author checked the quality of the
explanations. The code examples used in the study and the line-level explanations are provided in
Appendix A.4.

The transfer distances of the practice problems and assessment problems to code examples were
set differently. Right after studying each code example, participants solved a practice problem,
which solution was isomorphic [45] to the code example. Participants could run their code and
receive feedback on whether they were correct. We chose isomorphic problems so that participants
could try out the same code structure they had just studied. For the assessment problems, we chose
contextual transfer [45] problems to test how each condition affects participants’ performance in
modifying learned code examples and transferring them to novel problems. Participants could not
run their code during the assessment nor receive feedback.

We conducted all sessions with Generate participants before any Select participants to populate
subgoal hierarchies for Selection task. The hierarchy algorithm generated subgoal hierarchies with
the Generate participants’ code groups.

Fig. 5. Left: the user interface for Baseline condition. Participants studied the worked example with line-level
explanations of the code only, and they could proceed to the next step at any time without requisites. Right:
the instruction and practice activities for the subgoal training. Participants grouped and subgoal-labeled
math equation-solving steps as practice and then checked the answer.

5.3 Measurements
Our measurements are two-fold. The evaluation of the quality and variety of the subgoals created
by participants was taken after the study with external evaluators. The assessment of participants’
learning gain and experience was conducted sequentially during the study (Table 2).
Code group quality. The quality of code groups made by Generate participants was classified
into three types—incorrect, meaningful, and core (see Table. 3). A code group is meaningful if
its constituent code lines collectively represent any useful subgoal. A code group is core if it is
meaningful and represents one of the subgoals essential to solving a problem. Code groups that are
not meaningful nor core are considered incorrect. We recruited two evaluators with four semesters

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 13

of TA experience in CS courses. The evaluators assessed the first 30 code groups together and the
remaining 39 code groups independently. The inter-rater reliability for the independent assessment
was substantial (Cohen’s kappa, 𝜅=0.63).

Table 3. The code groups that the evaluators assessed as incorrect, meaningful, and core respectively. The
entire code example is in Fig. 2.

Code group quality Example

Incorrect
L1: tips = [15, 5.50, 6.75, 10, 12, 18.50, 11.75, 9]
L2: sum = 0
L5: sum = sum + tips[lcv]

Meaningful L6: lcv = lcv + 1
L4: while (lcv <len(tips)):

Core
L4: while (lcv <len(tips)):
L6: lcv = lcv + 1
L7: average = sum / len(tips)
L8: print(average)

Subgoal label quality. The quality of subgoal labels made by Generate participants was classified
into three types—incorrect, problem-specific, and problem-independent [36] (see Table. 4). A label is
incorrect if it simply describes the execution of code or is wrong. A label is problem-specific if it
correctly describes the function of code but contains information specific to the current problem
and cannot be generalized to other isomorphic problems. A label is problem-independent if it is
correct and generalizable to other isomorphic problems. We recruited two other evaluators with
two semesters of TA experience in CS courses. Likewise, they assessed the labels from the first 30
code groups together and the remaining 72 labels independently. The inter-rater reliability for the
independent assessment was high (Cohen’s kappa, 𝜅=0.68).

Table 4. Subgoal labels that evaluators assessed as incorrect, problem-specific, and problem-independent. The
labels described the subgoal for code “sum = sum + tips[lcv]” in Fig. 2.

Subgoal label quality Example
Incorrect Add tuple[lcv] to sum

Problem-specific Add a tip value to total sum
Problem-independent Add a value to get the total sum

Diversity index and conflict ratio of code groups. One of our assumptions (A2) in algorithm
design is that learners will generate diverse code groups that can complement each other. Hence,
diversity and complementarity in code groups are important properties that make our learnersourc-
ing workflow effective. We used Simpson’s diversity index [51] to measure the diversity of code
groups. For the calculation of the index, we treated each code group as an entity and the number
of its submissions by participants as its population. We measured the complementarity of code
groups by the ratio of conflicting code group pairs in all possible pairs (1.0 is a total conflict). Two
code groups are complementary if one is the subset of the other or there are no intersecting code
lines; otherwise, they conflict and cannot coexist in the same hierarchy (see Fig. 7). However, there
will be existential conflicts between code groups because there can be multiple correct instances of
subgoal hierarchies. We measured the existential conflict ratio by the same calculation but with
only core code groups.

, Vol. 1, No. 1, Article . Publication date: October 2023.

14 Hyoungwook Jin and Juho Kim

Holistic evaluation on subgoal hierarchies. Holistic evaluation is meaningful apart from the
previous measurements. A hierarchy may not be effective for learning, even though its constituent
code groups and labels are correct individually. For example, a subgoal hierarchy may have an
imbalanced goal structure or inconsistent subgoal labels for denoting parts of code. The holistic
evaluation aims to evaluate code groups and labels as a whole beyond their individual qualities.
The assessment focused on 1) the composition of code groups in each layer in hierarchies and 2) the
consistency among subgoal labels (see Fig. 6). We assessed the composition by evaluating whether
each parent code group is split in a logically even manner by its child code groups. We quantified
consistency by the size of the largest set of labels that do not conflict with each other in denoting
variables or concepts. The evaluators who assessed the code groups worked together to evaluate
the composition and consistency of the three subgoal hierarchies generated for each code example.

Score increase. Participants’ code-tracing skills were measured with the multiple-choice questions
in pre and post-tests (Step 3 and 9 in Table 2). Pre and post-tests were composed of questions that
asked about execution outputs of while loops or the code to print desired outcomes. The questions
for both tests were identical, but the order of questions and options was randomized. The score
differences between pre and post-tests were calculated for each participant to measure individuals’
learning gain in code-tracing skills.

Performance score. Participants’ code-writing skills were measured with four assessment problems
and a Parsons problem (Step 7 in Table 2). Two external evaluators graded the participants’ answers
to the assessment problems. The evaluators had two and four semesters of TA experience in an
introductory Python programming class. The evaluators followed the grading guidelines from the
previous work [36], and the total score for the four problems was 36. For each assessment problem,
the two evaluators graded the first 20 participants’ answers together to make a specific grading
scheme. They graded the remaining 25 answers independently. The inter-rater reliability of the
independent grading was high (Pearson’s correlation, 𝑟=0.94). Participants’ answers to the Parsons
problem were auto-graded and scored out of 10. Each participant’s performance score is the sum of
the assessment score and the Parsons problem score.

Cognitive load. The cognitive load of participants was measured right after the example learning
steps to evaluate how each intervention imposes a burden on learners (Step 6 in Table 2).We used ten
10-point Likert-scale questions designed to measure cognitive load for programming tasks [43]. The
questions asked about three types of cognitive load—intrinsic, extrinsic, and germane. Participants’
ratings for each question were summed up by the types, resulting in a maximum of 30 for intrinsic
and extrinsic, and 40 for germane.

Post-survey questions. After the post-test, the participants received survey questions on their
learning experience and system usability (Step 10 in Table 2). The survey is composed of two parts.
The first part (Fig. 10) had questions about their experience studying code examples and were
common to all conditions. The second part (Fig. 11) had questions about the system’s usability and
helpfulness for conducting condition-specific tasks and were different by condition. Each question
had two sub-questions in which participants rate a 7-point Likert scale for a given statement and
leave text comments to explain their rating.

6 RESULTS
We report the quantitative results and participants’ comments on the evaluation study and answer
the three research questions. We organized this section by each research question.

RQ1. Can CodeTree learnersource correct and comprehensive subgoal hierarchies?

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 15

Learnersourced subgoal hierarchies were correct and complete. The ratios of correct (meaningful +
core) code groups in total code groups in respective subgoal hierarchies were 13/13, 13/14, and 20/21.
Moreover, the subgoal hierarchies contained all the core code groups identified by the evaluators.
Noting that the average ratios of core code groups in each participant’s submission were 65%, this
result shows that the participants could collectively populate most of the core code groups, although
a participant alone could not. In terms of label quality, the ratios of correct (problem-specific +
problem-independent) subgoal labels in total labels were 12/13, 11/14, and 18/21 in each subgoal
hierarchy. Among them, 8, 8, and 10 subgoal labels were problem-independent. In the holistic
evaluation, most compositions of the code groups were correct, and the consistencies between
subgoal labels were also high. The ratios of correct parent-child code group relations were 6/6, 5/7,
and 8/10. The sizes of the largest consistent subgoal label set were 11/13, 12/14, and 21/21. Hence,
we conclude that each generated subgoal hierarchy is correct and consistent as a whole. Detailed
evaluation results of subgoal hierarchies for the first and second code examples are presented in
Fig. 6.

Fig. 6. The subgoal hierarchy generated for code examples 1 and 2 and their evaluation results. We presented
the most selected subgoal labels only. The participants wrote subgoal labels in Korean to avoid language
barriers in describing good labels, and we translated them into the figure. The labels that are inconsistent
with others are bolded. The evaluators judged these labels to be inconsistent in that they use exact variable
names (e.g., rolls and lcv) for reference while others explain in words.

The participants generated meaningful code groups and labels. Almost all of the code groups that
Generate participants made were correct (meaningful + core). On average, 95% of the code groups
from a participant were correct (𝑆𝐷 = 6%). On the other hand, the ratios for core code groups were
only 65% (𝑆𝐷 = 17%). For MCQ responses, the participants chose better or equal quality labels most
of the time (𝑀 = 98%, 𝑆𝐷 = 3%). These observations collectively verify our assumption A1 to a
certain extent that the majority of individual learners can identify correct subgoals but struggle to
generate complete hierarchies with all core code groups.

, Vol. 1, No. 1, Article . Publication date: October 2023.

16 Hyoungwook Jin and Juho Kim

The participants generated diverse but somewhat conflicting code groups. The Simpson’s diversity
indexes of code groups for the three code examples were 0.93, 0.91, and 0.96. Their conflict ratios
were 0.54, 0.54, and 0.55, and their existential conflict ratios were 0.53, 0.57, and 0.57. High diversity
indexes and moderate conflict ratios indicate that participants recognized diverse subgoals but from
different instances of subgoal hierarchies. Although this does not align with our assumption A2
that learners will make complementary subgoals, the quality evaluation showed that the algorithm
filtered conflicting code groups and generated hierarchies correctly. We expect that there is room
for guiding learners to generate subgoals of specific instances to reduce conflicts and make our
workflow more efficient.

Fig. 7. The code groups that the Generate participants generated for code example 1. The number in a code
group indicates the number of participants who submitted it. To measure conflicts between code groups, we
counted the ratio of conflict relations (colored in red) in all pairs of code groups.

Just a few learner contributions could help generate high-quality subgoal hierarchies. To estimate the
number of learners needed for achieving high-quality subgoal hierarchies, we measured the quality
of code groups and subgoal labels under a simulation. We simulated 1) the hierarchy generation
algorithm and 2) the Selection task, each with 𝑛 number of simulated learners.

To simulate the algorithm with 𝑛 participants, we randomly sampled 𝑛 Generate participants. We
then used the algorithm to generate subgoal hierarchies from the sampled participants’ code groups.
The random sampling was repeated 15 times for each 𝑛. We report their average. We calculated
the ratio of correct (meaningful + core) code groups and the number of core code groups in the
generated hierarchies and plotted them against the number of simulated learners in Fig. 8 (A) and
(B). The ratios of correct code groups at the end (𝑛=15) were 0.93, 0.87, and 0.95 for the subgoal
hierarchies of each code example. The numbers of core code groups at the end were 6.33, 5.00, and
10.00. Both estimates saturate around 𝑛=5, albeit the third subgoal hierarchy continued to improve
and populated all the core code groups at 𝑛=15.

To observe how the quality of subgoal labels changes throughout the Selection task, we simulated
𝑛 successive learner’s responses in the Selection task with a probability that a participant will
choose a better subgoal label in an MCQ. We set the probability as 0.98 based on our empirical
result. A simulated learner votes for one of the best subgoal labels in given MCQ options or other
options according to the probability. For each 𝑛, we repeated the simulation 15 times. We report the
average ratio of correct (problem-specific + problem-independent) and problem-independent labels
among the labels that received the most votes. Fig. 8 (C) and (D) plot these against the number of
simulated learners. All hierarchies achieved high correctness at the end (1.00, 0.93, and 0.90) and
reached the maximum achievable with the given data. All hierarchies also had high populations of

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 17

problem-independent labels (0.82, 0.77, and 0.66) close to their achievable maximums (0.92, 0.79, and
0.71). Both estimates saturated around 𝑛=5.

The result implies that just five learners can successfully populate a goal structure and subgoal
labels for a code example. Such learner-to-code example ratio (five to one) shows that the generation
of subgoal hierarchies for all code examples in typical Q&A websites and MOOCs is feasible with
just existing learners in the learning environments. For instance, a question on StackOverflow is
viewed by 30 people on average in a month 2. If five of them are motivated to understand code
examples in depth and contribute subgoals to CodeTree, the system will be able to populate subgoal
hierarchies for all newly created and old code examples on StackOverflow. However, we also clearly
note that our study participants may have a higher level of prior knowledge in programming than
typical learners in the environments, and we may not replicate such high efficiency (i.e., five to one)
in the wild where the level of code complexity and knowledge of learners vary a lot. Nevertheless,
our finding suggests that learnersourcing is a scalable approach for collecting subgoals online. We
discuss how we can concretize this finding in future research in Section 8.

Fig. 8. Each color line denotes subgoal hierarchies for different code examples: green for code example 1,
blue for code example 2, and red for code example 3. (A, B) The average ratios of (correct/core) code groups
in hierarchies that were generated with the code groups of randomly sampled 𝑛 participants. The dashed
line denotes the total number of core code groups. (C, D) The average ratio of correct/problem-independent
labels at the end of the selection task simulation with 𝑛 participants. The dashed lines denote the maximum
achievable ratios for given datasets. For example, if the subgoal labels for a code group are all incorrect, there
is no way to improve.

RQ2. Do learners find Generation and Selection tasks helpful for learning and manageable
to do?
2https://data.stackexchange.com/stackoverflow/query/213319/average-views-per-question-by-month

, Vol. 1, No. 1, Article . Publication date: October 2023.

18 Hyoungwook Jin and Juho Kim

The generation task improved code tracing skills. All except one participant scored equal or
higher in their post-test. The score increases (Fig. 9 (A)) in Generate condition were statistically
significantly higher than in Baseline condition (one-tailed t-test, 𝑝 = 0.03, 𝑑 = 0.72). The score
increases in Select condition were higher than in Baseline but not statistically significant (one-tailed
t-test, 𝑝 = 0.15, 𝑑 = 0.38). The performance scores (see Fig. 9 (B)) in both Generate and Select
conditions were higher than in Baseline condition but not statistically significant (one-tailed t-test,
𝑝 = 0.15, 𝑑 = 0.38 between Baseline and Generate, 𝑝 = 0.07, 𝑑 = 0.40 between Baseline and Select).

Our results and previous studies on subgoal learning [36, 45] complement each other to a certain
extent. The score increases and performance scores measure participants’ code tracing and writing
skills respectively. Previous studies observed significant improvement in code-writing skills for
the active and constructive forms of subgoal learning but weak significance in code-tracing skills.
On the other hand, we observed significant improvements in participants’ code-tracing skills only.
In theory, both code-tracing and writing skills should have improved because code-tracing is a
precursor to code writing [32]. We speculate that the difference in the tools for subgoal generation
might have elicited different aspects of learning more prominent. Nevertheless, they accord closely
with the positive effect of subgoal learning in improving transfer distance.

Fig. 9. (A) Average score increases between pre and post-test scores across conditions, (B) Average performance
scores across conditions, (C) Average self-reported ratings of intrinsic (red), extrinsic (green), germane (blue)
cognitive load across conditions.

Generation and Selection tasks were manageable microtasks. There were no significant differences
between conditions for the three types of cognitive load (one-way ANOVA, intrinsic: 𝐹 = 0.07,
𝑝 = 0.94, extrinsic: 𝐹 = 0.68, 𝑝 = 0.61, germane: 𝐹 = 0.50, 𝑝 = 0.52). Little differences among the
conditions indicate that our microtasks did not impose additional cognitive load despite being
more active than Baseline. P26 commented that subgoal learning tasks were manageable because
top-down exploration of subgoals helped him digest the code easily: “I could understand long code
examples faster by dividing them into smaller units.”
Generation and Selection tasks helped improve learners’ satisfaction. The learning condition did

not affect participants’ Q1: understanding the usage of while loops and Q2: comprehension of code
examples (one-way ANOVA, 𝐹 = 0.65, 𝑝 = 0.52 for Q1, 𝐹 = 2.56, 𝑝 = 0.09 for Q2). However, the
Generate and Select participants perceived that they Q3: understood the hierarchical structure of code
examples significantly better than the Baseline participants (one-tailed t-test, 𝑝 = 0.02, 𝑑 = 0.79
between Baseline and Generate, 𝑝 = 0.04, 𝑑 = 0.69 between Baseline and Select). Subgoal learning
tasks were preferred for Q4: future reuse over the Baseline task, but not statistically significantly

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 19

Fig. 10. Likert scale responses for the post-survey questions regarding learning experience. Note that words
in parenthesis were changed depending on the answerers’ conditions. The survey questions were: Q1. How
much did (seeing code and explanations/subgoal learning tasks) help to understand the usage of while loops?
/ Q2. How much did (seeing code and explanations/subgoal learning tasks) help to understand code examples?
/ Q3. How much did (seeing code and explanations/subgoal learning tasks) help to understand hierarchical
structures of code examples? / Q4. How often do you want to use (code examples/subgoal learning tasks) in
future programming learning?

(one-tailed t-test, 𝑝 = 0.06, 𝑑 = 0.58 between Baseline and Generate, 𝑝 = 0.31, 𝑑 = 0.31 between
Baseline and Select).
The participants in Generate condition liked the process of explicitly identifying the functions

of each part of the code even without corrective feedback. P24 commented, “Subgoal learning
would be helpful to learn not only the solution specific to example problems but also the general
strategies for solving other problems.” Another participant P30 said, “[Generation task] greatly
helped to organize code into small pieces. I used to think programming was difficult, but I could gain
confidence by doing the task and solving problems.” We speculate that the statistical insignificance
resulted from the relatively high satisfaction of Baseline participants. Baseline participants liked the
simplicity of the interface and felt more familiar to use. P3 in the Baseline condition noted “the UI
was so simple that I could inspect and understand code example well.” We may observe a more
significant preference between conditions if the study is designed to be within-subjects or more
longitudinal to reduce the effect of their initial burden to familiarize novel interfaces.

The participants also perceived the corrective feedback in the Selection task as correct and helpful
for a check (see Fig. 11 Q4 and Q5). More than half of the Select participants rated over 5 for Q4
and Q5. P40 said that the feedback was useful to confirm his understanding of code examples:
“I was unsure of my answers many times, but the correct signs helped me confirm that I was
doing right.” P33 commented the immediacy of feedback also helped: “[the corrective feedback]
trained me to self-explain the code with more general and purposeful terms, rather than simply
explaining the execution of the code.” P44 pointed out that the feedback would be more effective
with supplementary explanations for answers. Although most participants thought the answers
given by CodeTree were reasonable, some participants doubted the accuracy of the feedback,
especially when their responses all turned out to be correct.

RQ3. Does the colored bar visualization help understanding and generation of subgoal
hierarchies?
The bar visualization helped the generation of subgoals. The Generate participants were asked

two questions regarding the hierarchy generation interface and the colored bar visualization (see
Fig. 11, Q1 and Q2). Both questions were rated over 5 by more than half of the participants. P25
thought the hierarchy generation interface was intuitive, easy to map between code and subgoals,

, Vol. 1, No. 1, Article . Publication date: October 2023.

20 Hyoungwook Jin and Juho Kim

and effective for representing complex goal structures: “The interface was easy to use and grasp
[what I was creating] because subgoals were indented like code in a familiar style.” P24 commented,
“The interface helped to understand code systematically. I first defined strategies [(i.e., subgoals)] of
problems, and then I selected corresponding parts in the actual code.” P20, P25, and P29 understood
visual notations correctly and liked the idea of using bar lengths and positions to present complex
goal structures. P20 noted “the lower-level bars were drawn to the right of, and only within, the
upper-level ones. It was intuitive and pleasant to look at with colors.”
The bar visualization in Selection task is unnoticeable but is helpful once noticed. The Select

participants had mixed perceptions of the helpfulness of the bar visualization (see Fig. 11, Q3). Half
of the participants commented that they did not notice the visualization because its visual changes
were too subtle. P31 said “I did not notice the visualization until answering this question. However,
if I had looked at it carefully, it would have been helpful to understand the overall hierarchical
structures.” For those who noticed the visualization, it helped to overview entire hierarchies and
check the hierarchical relations between the code asked by MCQs. P41 commented, “I especially
liked the area highlighted in orange and the bar on the left showing the structure and scope. I think
it helped a lot to understand the overall structure visually. It was also good to show larger scopes
of goals first and move to more detailed goals. It would have been better if the bars also showed
chosen subgoal labels.”

Fig. 11. Likert scale responses for the post-survey questions regarding user interface and the colored bar
visualization, and system-generated feedback. Q1-Q3 were asked to the Generate participants, and Q4-Q5
were asked to the Select participants. Images of system features were attached to each question in the survey
to indicate each feature clearly.

7 DISCUSSION
In the following subsections, we discuss the implication of our results for generating subgoal
hierarchies at scale and generalizing our system design to other relevant domains.

7.1 Efficiency of our workflow for generating hierarchies
One of our notable findings is that just a few learners are needed to generate high-quality goal
structures. CodeTree generated correct goal structures with just five programming novices. The
participants in the study spent about 9 minutes completing each Generation and Selection task
(6 minutes for Baseline task). Considering that Generate tasks can run in parallel as they are
independent of each other, CodeTree can generate a multi-level goal structure of a code example
within 10 minutes in an ideal case. Previous crowdsourcing systems [14, 57] required hundreds

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 21

of human intelligence tasks (HITs) for generating taxonomy hierarchies of size 10-20 nodes, a
size comparable to our goal structures. Compared with these hierarchy generation methods, our
learnersourcing workflow can be deployed in even small classrooms.
We argue that learnersourcing may shed light on reducing the number of workers and time

needed for crowdsourcing hierarchically structured data (e.g., concept maps and evaluation criteria).
Previous systems that used paid crowdworkers (e.g., MTurk) focused on making each task small
so that crowdworkers could contribute without knowing a global hierarchy. However, using
fragmented microtasks increased the number of total HITs. In our study, we observed that learners
tend to have a good understanding of global hierarchies. For instance, more than half of the
Generate participants submitted multi-leveled subgoals. Because learners have a good sense of global
hierarchies, crowdsourcing systems may empower learners to engage more in the global process of
hierarchy generation. Learners may be empowered to directly edit and fix global hierarchies to
complement algorithmic coordination.
Indeed, we observed the benefit of empowering learners for higher engagement in our system

design iterations. Early Generation interface constrained learners from making multi-level subgoals
(i.e. adding a subgoal below another subgoal). We designed the system this way because we thought
allowing the creation of multi-level subgoals would increase task complexity, and learners would
not want to exert additional effort on making more subgoals. However, learners in pilot studies
commented that making multi-level subgoals would lower the task complexity as they could make
goal structures more flexible and closer to what they picture. After redesigning the Generation task
to accept multi-level subgoals, we could observe higher learner satisfaction and less confusion for
making subgoals. The change also improved our system by collecting more subgoals at different
levels with fewer learners. These observations align with previous study [53] in that providing
learners a choice to engage in tasks rather than forcing them can improve motivation and the
quality of collective output. Although this needs a more thorough investigation in real class settings,
it will be worth designing future learnersourcing systems with more flexibility and room for higher
learner engagement so that learners can contribute more and better if they want to.

7.2 Generalization of the workflow and interfaces
Hierarchical summaries of videos and articles are often effective for navigation, overviewing, and
learning the contents [31, 47, 58, 66]. These hierarchical summaries are conceptually similar to
subgoal hierarchies, as they divide contents into meaningful units and have labels that summarize
each unit. Ideally, content creators can provide hierarchical summaries at their creation time, but
there are millions of content already existing on the web without such summaries. The generation
of hierarchical summaries at scale can improve the overall web experience. However, generating
hierarchical summaries through current data and expert-driven methods share common challenges
with subgoal hierarchy generation. Automatic generation requires large datasets specific to each
domain to train models, and domain experts who can generate them are scarce compared to the
number of videos.
We argue that our learnersourcing approach can be a viable option for generating hierarchical

summaries at scale. Our interface and algorithm can work for diverse content types. The core
user interface for grouping contents into meaningful units may apply to other content types. For
instance, for videos, viewers can interact with a timeline bar to group sections of videos and label
them. Then, our algorithm can identify how the timeline needs to be structured. Since videos are a
popular medium of online learning (like how-to’s and MOOCs), the tasks can also be designed into
pedagogical activities [61].

, Vol. 1, No. 1, Article . Publication date: October 2023.

22 Hyoungwook Jin and Juho Kim

7.3 Comparison to previous studies on subgoal learning
Despite having many similarities with the settings of previous studies [36, 44, 45], our study did
not replicate some of their findings. Particularly, our study’s three conditions (Baseline, Generate
and Select) are comparable to No subgoal labels, Subgoal labels given and Subgoal labels generated
conditions inMorrison et al.’s study [44]. We adopted their apparatus for quantitative measurements,
instructional materials, and study procedures. However, we observed significant improvement in
code-tracing skills in our Generate condition and a mediocre change in code-writing, contrary to
Morrison et al.’s study.
Our learning interventions had several differences from that of Morrison et al.’s study. First,

we asked participants to group code lines by themselves and make labels, while Morrison et al.’s
participants had to make subgoal labels only. Second, the units of subgoal were different between
the studies. The subgoals in our study grouped code lines; Morrison’s subgoals grouped code
writing steps (e.g., 1. determine the termination condition of a loop. 2. invert the termination
condition into a continuation condition.). These differences in learning interventions might have
elicited different skills (code-tracing vs. code-writing). For example, the grouping activity and
code-line-based subgoals might make participants stick to code and self-explain code in detail,
improving their code-tracing skills. On the other hand, the subgoals that group code writing steps
might have helped learners remember the procedure to write code from scratch.
Our study also did not replicate the findings of Margulieux and Catrambone [36] to a certain

extent. Margulieux and Catrambone showed that constructive subgoal learning requires either
guidance or corrective feedback to elicit a learning effect. In our study, although Generate partici-
pants did not receive guidance or feedback, they excelled in the post-test. Our result may suggest
that 1) constructive subgoal learning is still better than passive learning even without feedback or
2) participants in our study had high prior knowledge and were less dependent on feedback as they
can correct themselves within the constructive activity. In future studies, it will be worth looking
into how the learner-driven grouping activity affects the learning experience and how different
levels of learners’ prior knowledge correlate to the necessity of guidance and feedback in subgoal
learning.

8 LIMITATIONS AND FUTUREWORK
We discuss the limitations of our work. First, although our controlled study helped observe the
learning benefits of using CodeTree, large-scale studies and deployments can provide stronger
empirical evidence in our simulated results for both the algorithm and Selection task. Second, we
should test code examples with more variety in complexity (e.g., code length and depth of loops)
and language to see if our workflow and interface work regardless of these variations. For instance,
the number of tasks and learners needed for generating high-quality subgoal hierarchies may not
linearly scale with code complexity, or code examples with complex structures might overwhelm
learners even with our microtasks. Future research may assess the efficiency of the workflow
and interface for generating the subgoals of large code bases (e.g., public repositories on GitHub)
that span dozens of lines across different files and complex algorithm code (e.g., solution code
on LeetCode) that require high-order skills to understand and decompose steps. It will also be
interesting to see how far learners’ proficiency in programming affects the number of learners
needed for generating high-quality subgoals and whether the contribution from poor learners hurts
the quality of code groups in our algorithm.

There is also room for improving CodeTree in the future. Generative AI models have the potential
to solve cold start problems by offloading the initial burden of learners [18]. We did not look deeply

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 23

into the possibility of using Codex for generating goal structures and subgoal labels because learner-
driven subgoal generation has pedagogical value on its own, and Codex often gave incorrect outputs
in our attempts. Although we used Codex only for generating explanations of code in this work, it
is promising to investigate fine-tuned prompts for goal structure generation.

Although this work puts more weight on generating goal structures, Selection task also has room
for improvement. While the multi-armed bandit algorithm was used to provide good answers,
simple random selection was used to generate distractors. More sophisticated methods to generate
pedagogically meaningful distractors [2, 59] will improve the learning gain of Selection task. It
will also be worth exploring different ordering of MCQs. We design CodeTree to traverse goal
structures in preorder and ask MCQs, considering the top-down approach is better for reading code
examples. Postorder or BFS-like traversal of goal structures may give a better learning experience
and preferences for learners.

In addition to refining CodeTree, future research can focus on deploying CodeTree in the wild to
benefit learners and instructors in the real world by leveraging its scalability. One good example is
to add CodeTree to Q&A websites so that when learners refer to the code examples, they naturally
experience subgoal labeling and voluntarily engage in subgoal learning without an instructor’s
request in the long run. To that end, CodeTree needs to deal with code examples written for more
diverse purposes, such as debugging and improving code styles [46], and we need to reimplement
CodeTree with a more general purpose and platform-agnostic technology such as Chrome extension.

Besides, it is necessary to inform instructors of the advantages and teaching methods of subgoal
learning so that CodeTree can take root in actual classes and disseminate from them. An immediate
actionable item is to adopt CodeTree to the introductory Python class in our institution. Since most
study participants took the class, we can expect a replication of significant learning effects from
the students. We can ask students to use CodeTree for self-explaining the subgoals of code in their
lab sessions, in which students solve practice problems after the lecture. The class deployment will
allow us to examine the long-term dynamics of subgoal learning [38] and help students utilize
subgoal learning in daily practices with metacognition. Instructors of the class can also use the
student-generated subgoal labels as a source to check and evaluate students’ understanding.
Despite the difficulty in deploying education systems to real-world learning environments, we

believe there is room for spreading subgoal learning with our system as the awareness and trials of
new technology adoption increase.

REFERENCES
[1] Solmaz Abdi, Hassan Khosravi, Shazia Sadiq, and Gianluca Demartini. 2021. Evaluating the quality of learning

resources: A learnersourcing approach. IEEE Transactions on Learning Technologies 14, 1 (2021), 81–92.
[2] Maha Al-Yahya. 2014. Ontology-based multiple choice question generation. The Scientific World Journal 2014 (2014).
[3] Ohad Barzilay, Christoph Treude, and Alexey Zagalsky. 2013. Facilitating crowd sourced software engineering via

stack overflow. In Finding Source Code on the Web for Remix and Reuse. Springer, 289–308.
[4] Michael S Bernstein, Greg Little, Robert C Miller, Björn Hartmann, Mark S Ackerman, David R Karger, David Crowell,

and Katrina Panovich. 2010. Soylent: a word processor with a crowd inside. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology. 313–322.

[5] Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sahami, Steven Cooper, and Daphne Koller. 2014. Programming
pluralism: Using learning analytics to detect patterns in the learning of computer programming. Journal of the Learning
Sciences 23, 4 (2014), 561–599.

[6] Richard Catrambone. 1994. Improving examples to improve transfer to novel problems. Memory & cognition 22, 5
(1994), 606–615.

[7] Richard Catrambone. 1995. Aiding subgoal learning: Effects on transfer. Journal of educational psychology 87, 1 (1995),
5.

[8] Richard Catrambone. 1996. Generalizing solution procedures learned from examples. Journal of Experimental
Psychology: Learning, Memory, and Cognition 22, 4 (1996), 1020.

, Vol. 1, No. 1, Article . Publication date: October 2023.

24 Hyoungwook Jin and Juho Kim

[9] Richard Catrambone. 1998. The subgoal learning model: Creating better examples so that students can solve novel
problems. Journal of experimental psychology: General 127, 4 (1998), 355.

[10] Richard Catrambone. 2011. Task analysis by problem solving (TAPS): Uncovering expert knowledge to develop
high-quality instructional materials and training. In Learning and Technology Symposium, Columbus, GA.

[11] Richard Catrambone and Keith J Holyoak. 1990. Learning subgoals and methods for solving probability problems.
Memory & Cognition 18, 6 (1990), 593–603.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374 (2021).

[13] Michelene TH Chi. 2009. Active-constructive-interactive: A conceptual framework for differentiating learning activities.
Topics in cognitive science 1, 1 (2009), 73–105.

[14] Lydia B Chilton, Greg Little, Darren Edge, Daniel SWeld, and James A Landay. 2013. Cascade: Crowdsourcing taxonomy
creation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1999–2008.

[15] Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim. 2022. AlgoSolve: Supporting Subgoal Learning in Algorithmic
Problem-Solving with Learnersourced Microtasks. In CHI Conference on Human Factors in Computing Systems. 1–16.

[16] Graham Cooper and John Sweller. 1987. Effects of schema acquisition and rule automation on mathematical problem-
solving transfer. Journal of educational psychology 79, 4 (1987), 347.

[17] Adrienne Decker, Lauren E Margulieux, and Briana B Morrison. 2019. Using the SOLO taxonomy to understand
subgoal labels effect in CS1. In Proceedings of the 2019 ACM Conference on International Computing Education Research.
209–217.

[18] Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing Educational Resources–Leveraging Large
Language Models for Learnersourcing. arXiv preprint arXiv:2211.04715 (2022).

[19] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons problems versus fixing and writing
code. In Proceedings of the 17th Koli Calling International Conference on Computing Education Research. 20–29.

[20] Bat-Sheva Eylon and F Reif. 1984. Effects of knowledge organization on task performance. Cognition and instruction 1,
1 (1984), 5–44.

[21] Mareike Florax and Rolf Ploetzner. 2010. What contributes to the split-attention effect? The role of text segmentation,
picture labelling, and spatial proximity. Learning and instruction 20, 3 (2010), 216–224.

[22] Paul Ginns. 2006. Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects.
Learning and instruction 16, 6 (2006), 511–525.

[23] Elena L Glassman, Aaron Lin, Carrie J Cai, and Robert C Miller. 2016. Learnersourcing personalized hints. In Proceedings
of the 19th ACM conference on computer-supported cooperative work & social computing. 1626–1636.

[24] Philipp Helfrich, Elias Rieb, Giuseppe Abrami, Andy Lücking, and Alexander Mehler. 2018. TreeAnnotator: versatile
visual annotation of hierarchical text relations. In Proceedings of the eleventh international conference on language
resources and evaluation (LREC 2018).

[25] Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas. 2013. Syntactic and functional variability of a
million code submissions in a machine learning mooc. In AIED 2013 Workshops Proceedings Volume, Vol. 25. Citeseer.

[26] Hyoungwook Jin, Minsuk Chang, and Juho Kim. 2019. SolveDeep: A System for Supporting Subgoal Learning in Online
Math Problem Solving. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. 1–6.

[27] Juho Kim et al. 2015. Learnersourcing: improving learning with collective learner activity. Ph. D. Dissertation. Mas-
sachusetts Institute of Technology.

[28] Juho Kim, Philip J Guo, Carrie J Cai, Shang-Wen Li, Krzysztof Z Gajos, and Robert CMiller. 2014. Data-driven interaction
techniques for improving navigation of educational videos. In Proceedings of the 27th annual ACM symposium on User
interface software and technology. 563–572.

[29] Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J Guo, Robert C Miller, and Krzysztof Z Gajos. 2014. Crowdsourcing
step-by-step information extraction to enhance existing how-to videos. In Proceedings of the SIGCHI conference on
human factors in computing systems. 4017–4026.

[30] Joon-Ho Lim, Yongjin Bae, Hyunki Kim, Yunjeong Kim, and Kyu-Chul Lee. 2015. Korean Dependency Guidelines
for Dependency Parsing and Exo-Brain Language Analysis Corpus. In Annual Conference on Human and Language
Technology. Human and Language Technology, 234–239.

[31] Ching Liu, Juho Kim, and Hao-Chuan Wang. 2018. ConceptScape: Collaborative concept mapping for video learning.
In Proceedings of the 2018 CHI conference on human factors in computing systems. 1–12.

[32] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Relationships between reading, tracing and
writing skills in introductory programming. In Proceedings of the fourth international workshop on computing education
research. 101–112.

[33] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Ziheng Huang. 2022. Generating diverse
code explanations using the gpt-3 large language model. In Proceedings of the 2022 ACM Conference on International

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 25

Computing Education Research-Volume 2. 37–39.
[34] Lauren Margulieux and Richard Catrambone. 2017. Using learners’ self-explanations of subgoals to guide initial

problem solving in app inventor. In Proceedings of the 2017 ACM Conference on International Computing Education
Research. 21–29.

[35] Lauren E Margulieux and Richard Catrambone. 2016. Improving problem solving with subgoal labels in expository
text and worked examples. Learning and Instruction 42 (2016), 58–71.

[36] Lauren E Margulieux and Richard Catrambone. 2019. Finding the best types of guidance for constructing self-
explanations of subgoals in programming. Journal of the Learning Sciences 28, 1 (2019), 108–151.

[37] Lauren E Margulieux, Mark Guzdial, and Richard Catrambone. 2012. Subgoal-labeled instructional material improves
performance and transfer in learning to develop mobile applications. In Proceedings of the ninth annual international
conference on International computing education research. 71–78.

[38] Lauren E Margulieux, Briana B Morrison, and Adrienne Decker. 2019. Design and pilot testing of subgoal labeled
worked examples for five core concepts in CS1. In Proceedings of the 2019 ACM Conference on Innovation and Technology
in Computer Science Education. 548–554.

[39] Lauren E Margulieux, Briana B Morrison, and Adrienne Decker. 2020. Reducing withdrawal and failure rates in
introductory programming with subgoal labeled worked examples. International Journal of STEM Education 7, 1 (2020),
1–16.

[40] Lauren E Margulieux, Briana B Morrison, Baker Franke, and Harivololona Ramilison. 2020. Effect of Implementing
Subgoals in Code. org’s Intro to Programming Unit in Computer Science Principles. ACM Transactions on Computing
Education (TOCE) 20, 4 (2020), 1–24.

[41] Samiha Marwan, Yang Shi, Ian Menezes, Min Chi, Tiffany Barnes, and Thomas W Price. 2021. Just a Few Expert
Constraints Can Help: Humanizing Data-Driven Subgoal Detection for Novice Programming. International Educational
Data Mining Society (2021).

[42] Piotr Mitros. 2015. Learnersourcing of complex assessments. In Proceedings of the Second (2015) ACM Conference on
Learning@ Scale. 317–320.

[43] Briana B Morrison, Brian Dorn, and Mark Guzdial. 2014. Measuring cognitive load in introductory CS: adaptation of
an instrument. In Proceedings of the tenth annual conference on International computing education research. 131–138.

[44] Briana B Morrison, Lauren E Margulieux, and Adrienne Decker. 2020. The curious case of loops. Computer Science
Education 30, 2 (2020), 127–154.

[45] Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. 2015. Subgoals, context, and worked examples in learning
computing problem solving. In Proceedings of the eleventh annual international conference on international computing
education research. 21–29.

[46] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What makes a good code example?: A
study of programming Q&A in StackOverflow. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 25–34.

[47] Megha Nawhal, Jacqueline B Lang, Greg Mori, and Parmit K Chilana. 2019. VideoWhiz: Non-Linear Interactive
Overviews for Recipe Videos.. In Graphics Interface. 15–1.

[48] Lin Ni, Qiming Bao, Xiaoxuan Li, Qianqian Qi, Paul Denny, JimWarren,MichaelWitbrock, and Jiamou Liu. 2022. Deepqr:
Neural-based quality ratings for learnersourced multiple-choice questions. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 36. 12826–12834.

[49] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. 2015. Autonomously generating hints by inferring
problem solving policies. In Proceedings of the second (2015) acm conference on learning@ scale. 195–204.

[50] Alexander Renkl. 1997. Learning from worked-out examples: A study on individual differences. Cognitive science 21, 1
(1997), 1–29.

[51] Edward H Simpson. 1949. Measurement of diversity. nature 163, 4148 (1949), 688–688.
[52] Anjali Singh, Christopher Brooks, and Shayan Doroudi. 2022. Learnersourcing in Theory and Practice: Synthesizing

the Literature and Charting the Future. In Proceedings of the Ninth ACM Conference on Learning@ Scale. 234–245.
[53] Anjali Singh, Christopher Brooks, Yiwen Lin, and Warren Li. 2021. What’s In It for the Learners? Evidence from a

Randomized Field Experiment on Learnersourcing Questions in a MOOC. In Proceedings of the Eighth ACM Conference
on Learning@ Scale. 221–233.

[54] Norman J Slamecka and Peter Graf. 1978. The generation effect: Delineation of a phenomenon. Journal of experimental
Psychology: Human learning and Memory 4, 6 (1978), 592.

[55] Thorvald A Sorensen. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity
of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5 (1948), 1–34.

[56] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii. 2012. BRAT: a
web-based tool for NLP-assisted text annotation. In Proceedings of the Demonstrations at the 13th Conference of the
European Chapter of the Association for Computational Linguistics. 102–107.

, Vol. 1, No. 1, Article . Publication date: October 2023.

26 Hyoungwook Jin and Juho Kim

[57] Yuyin Sun, Adish Singla, Dieter Fox, and Andreas Krause. 2015. Building hierarchies of concepts via crowdsourcing. In
Twenty-Fourth International Joint Conference on Artificial Intelligence.

[58] Anh Truong, Peggy Chi, David Salesin, Irfan Essa, and Maneesh Agrawala. 2021. Automatic generation of two-level
hierarchical tutorials from instructional makeup videos. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 1–16.

[59] Ellampallil Venugopal Vinu et al. 2015. A novel approach to generate MCQs from domain ontology: Considering DL
semantics and open-world assumption. Journal of Web Semantics 34 (2015), 40–54.

[60] Xu Wang, Srinivasa Teja Talluri, Carolyn Rose, and Kenneth Koedinger. 2019. UpGrade: Sourcing student open-ended
solutions to create scalable learning opportunities. In Proceedings of the Sixth (2019) ACM Conference on Learning@
Scale. 1–10.

[61] Sarah Weir, Juho Kim, Krzysztof Z Gajos, and Robert C Miller. 2015. Learnersourcing subgoal labels for how-to videos.
In Proceedings of the 18th ACM conference on computer supported cooperative work & social computing. 405–416.

[62] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado, Krzysztof Z Gajos, Walter S Lasecki, and Neil
Heffernan. 2016. Axis: Generating explanations at scale with learnersourcing and machine learning. In Proceedings of
the Third (2016) ACM Conference on Learning@ Scale. 379–388.

[63] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2019. How do developers utilize source code from
stack overflow? Empirical Software Engineering 24, 2 (2019), 637–673.

[64] Iman Yeckehzaare, Tirdad Barghi, and Paul Resnick. 2020. QMaps: Engaging Students in Voluntary Question Generation
and Linking. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1–14.

[65] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. 2012. The k-armed dueling bandits problem. J.
Comput. System Sci. 78, 5 (2012), 1538–1556.

[66] Xingquan Zhu, Ahmed K Elmagarmid, Xiangyang Xue, Lide Wu, and Ann Christine Catlin. 2005. InsightVideo: toward
hierarchical video content organization for efficient browsing, summarization and retrieval. IEEE Transactions on
Multimedia 7, 4 (2005), 648–666.

A STUDY MATERIALS
In the appendix, we provide our study materials to help readers understand the exact setting of our
study and replicate our study in the future. Since all materials were localized into Korean in the
study, we added the original (localized) text along with English translations.

A.1 Pre & Post testQuestions
1/5. What are the first and last numbers output by the code segment? (original: 아래 프로그램
코드에서처음과마지막으로출력되는값은무엇인가요?)

value = 15
while(value < 28):

print(value)
value = value + 1

(1) 15, 27
(2) 15, 28
(3) 16, 27
(4) 16, 28
(5) I do not know (original:잘모르겠음)
Answer: 15, 27

2/5. You are trying to write a program to print the sum of the values in vals. Which of the 3
segments can be entered in the “# missing code” part? (original: vals에있는값들의합을출력하기
위한 프로그램 코드를 작성하려 합니다. “# missing code” 부분에 들어갈 수 있는 코드는 3개의
Segment중어떤것인가요?)

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 27

vals = [2,8,7,6,4,7,9,11,8,6,7,4,3,5,7,11,9,7,4,12]
total = 0
missing code
print(total)

Segment I.
pos = 0
while(pos < len(vals)):

totla = total + vals[pos]

Segment II.
pos = len(vals)
while(pos > 0):

total = total + vals[pos]
pos = pos - 1

Segment III.
pos = 0
while(pos < len(vals)):

total = total + vals[pos]
pos = pos + 1

(1) I
(2) II
(3) III
(4) I, III (original: I과 III)
(5) II, III (original: II와 III)
(6) I do not know (original:잘모르겠음)
Answer: III

3/5. If the value of n is defined as 4, what is the output value of the program code below? (original:
만약 n의값이 4로정의되었다면아래프로그램코드의출력되는값은무엇인가요?)

outer = 0
while(outer < n):

inner = 0
while(inner <= outer):

print(str(outer) + " ")
inner = inner + 1

outer = outer + 1

(1) 0 1 2 3
(2) 0 0 1 0 1 2
(3) 0 1 2 2 3 3 3
(4) 0 1 1 2 2 2 3 3 3 3
(5) 0 0 1 0 1 2 0 1 2 3
(6) I do not know (original:잘모르겠음)
Answer: 0 1 1 2 2 2 3 3 3 3

, Vol. 1, No. 1, Article . Publication date: October 2023.

28 Hyoungwook Jin and Juho Kim

4/5. What is the output of the program code below? (original:아래프로그램코드의출력결과는
무엇인가요?)

"%" is the remainder operation.
a % b returns the remainder
after divinding a by b
"%"는 나머지 연산입니다.
a % b는 a를 b로 나눈 뒤

나머지를 반환합니다.

a = 24
b = 30
while (b != 0):

r = a % b
a = b
b = r

print(a)

(1) 0
(2) 6
(3) 12
(4) 24
(5) 30
(6) I do not know (original:잘모르겠음)
Answer: 6

5/5. Which of the segments will print 1 4 7 10 13 16 19? (original:아래에서 1 4 7 10 13 16 19를
출력하는프로그램코드는무엇인가요?)

Segment I.
k = 1
while(k < 20):

if(k % 3 == 1):
print(str(k) + " ")

k = k + 3

Segment II.
k = 1
while(k < 20):

if(k % 3 == 1):
print(str(k) + " ")

k = k + 1

Segment III.
k = 1
while(k < 20):

print(str(k) + " ")
k = k + 3

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 29

(1) I
(2) II
(3) I, II (original: I과 II)
(4) II, III (original: II와 III)
(5) I, II, III (original: I, II, III모두)
(6) I do not know (original:잘모르겠음)

Answer: I, II, III

A.2 Materials for Subgoal Training
We show the full-page screenshots of our interface and instructions for the subgoal training steps.
We provide both localized and English versions for precision and legibility.

A.2.1 Subgoal Training Interface for Generate Condition.

The original (i.e., localized) version.

, Vol. 1, No. 1, Article . Publication date: October 2023.

30 Hyoungwook Jin and Juho Kim

The English version.

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 31

A.2.2 Subgoal Training Interface for Select Condition.

The original (i.e., localized) version.

, Vol. 1, No. 1, Article . Publication date: October 2023.

32 Hyoungwook Jin and Juho Kim

The English version.

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 33

A.3 TheQuestionnaire for Measuring Cognitive Load
All the questions were answered with a linear scale of 10 (1: Not at all the case (전혀그렇지않다),
10: completely the case (완전히그렇다)).

(1) The topics (usage of while loop) covered in the activity were very complex. (original:활동에서
다룬주제(while문사용법)는매우어려웠다.)

(2) The activity covered solution (code example) that I perceived as very complex. (original:
활동에서다뤄진예시문제풀이(예제코드)가내게는매우어려웠다.)

(3) The activity covered the concepts and definitions of while loop that I perceived as very
complex. (original:활동에서다룬 while loop의개념과정의는내게는매우어려웠다.)

(4) The instructions and/or explanations during the activity were very unclear. (original:활동의
지시사항과설명이명확하지않았다.)

(5) The instructions and/or explanations were, in terms of learning, very ineffective. (original:
활동의지시사항과설명은학습하는데에효과적이지못했다.)

(6) The instructions and/or explanations were full of unclear language. (original:활동의지시
사항과설명은불분명한말로설명되었다.)

(7) The activity really enhanced my understanding of the usage of while loop. (original:활동을
통해 while loop사용법에대한이해도가높아졌다.)

(8) The activity really enhanced my knowledge and understanding of computing / programming.
(original:활동을통해프로그래밍에대한이해도가높아졌다.)

, Vol. 1, No. 1, Article . Publication date: October 2023.

34 Hyoungwook Jin and Juho Kim

(9) The activity really enhanced my understanding of the program code covered. (original:활동을
통해활동에서다뤄진코드에대한이해도가높아졌다.)

(10) The activity really enhanced my understanding of the concepts and definitions. (original:
활동을통해다뤄진개념과정의에대한이해도가높아졌다.)

A.4 Code Examples
The three code examples that participants studied. We also provide the line-level explanations
generated by the Codex AI model in the form of comments. The explanations were not localized in
the study.
Code Example 1

Create a list of tips
tips = [15, 5.50, 6.75, 9]
Create a variable to hold the sum
sum = 0
Create a variable to hold the loop control value
lcv = 0
Loop through the list
while (lcv < len(tips)):

Add the current tip to the sum
sum = sum + tips[lcv]
Increment the loop control value
lcv = lcv + 1

Divide the sum by the number of tips to get the average
average = sum / len(tips)
Print the average
print(average)

Code Example 2

Create a list of 20 rolls
rolls = [2, 8, 7, 6, 4, 7, 9, 11, 8, 6, 7, 4, 3, 5, 7, 11, 9, 7, 4, 12]
Create a counter for the number of 7s rolled
count = 0
Create a counter for the index of the rolls list
lcv = 0
While the index is less than the length of the rolls list
while (lcv < len(rolls)):

If the roll at the index is a 7
if (rolls[lcv] == 7):

Add 1 to the count
count = count + 1

Add 1 to the index
lcv = lcv + 1

Print the count
print (count)

Code Example 3

, Vol. 1, No. 1, Article . Publication date: October 2023.

CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code Examples 35

Initialize the number of primes to three (since 1, 2, and 3 are already primes)
count = 3
Initialize the number to check if it is prime to four
num = 4
Check if the number is less than 100
while (num < 100):

Initialize the counter variable to one less than the number
lcv = num - 1
Initialize the variable that indicates whether the number is prime to true
isPrime = True
Check if the counter variable is greater than one
while (lcv > 1):

Check if the number is divisible by the counter variable
if (num % lcv == 0):

Set the variable that indicates whether the number is prime to false
isPrime = False

Decrement the counter variable
lcv = lcv - 1

Check if the number is prime
if (isPrime == True):

Increment the number of primes
count = count + 1

Increment the number
num = num + 1

Print the number of primes
print (count)

A.5 Parsons Problem
The problem

Let’s imagine that you have a list that contains amounts of rainfall for each day, collected by a
meteorologist. Her rain gathering equipment occasionally makes a mistake and reports a negative
amount for that day. We have to ignore those. We need to write a program to:

(a) calculate the total rainfall by adding up all the positive integers (and only the positive
integers),

(b) count the number of positive integers, and
(c) print out the average rainfall at the end. Only print the average if there was some rainfall,

otherwise print “No rain”.
매일 내린 강수량을 측정한 데이터가 있습니다.하지만, 강수량 측정 기기에 오류가 있어 가끔
강수량이음수로기록되는데,이런측정값은제외해야합니다.아래기능을가진프로그램을작
성해보세요.

(a) 양수값으로기록된강수량만을더해전체강수량을계산하기
(b) 양수값으로강수량이기록된날을세기
(c) 양수로기록된강수량이있을땐평균강수량을출력하고,없을땐 “No rain”출력하기

The code segments to rearrange. Each segment is separated by “###”.

, Vol. 1, No. 1, Article . Publication date: October 2023.

36 Hyoungwook Jin and Juho Kim

lcv = lcv + 1
###
if (count > 0):
###
while (lcv < len(rain)):
###
else:
###
sumRain = sumRain + rain[lcv]
count = count + 1
###
lcv = 0
###
ave = sumRain / count
print(ave)
###
rain = [0,5,1,0,-1,6,7,-2,0]
sumRain = 0
count = 0
###
print("No rain")
###
if (rain[lcv] >= 0):

, Vol. 1, No. 1, Article . Publication date: October 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Subgoal Learning
	2.2 Active Learnersourcing

	3 Design Goals
	4 System
	4.1 Microtasks for subgoal learning
	4.2 Colored bar visualization to overview subgoal hierarchies
	4.3 Workflow and algorithm for generating multi-leveled hierarchies

	5 Study Design
	5.1 Participants
	5.2 Procedure and Materials
	5.3 Measurements

	6 Results
	7 Discussion
	7.1 Efficiency of our workflow for generating hierarchies
	7.2 Generalization of the workflow and interfaces
	7.3 Comparison to previous studies on subgoal learning

	8 Limitations and Future Work
	References
	A Study Materials
	A.1 Pre & Post test Questions
	A.2 Materials for Subgoal Training
	A.3 The Questionnaire for Measuring Cognitive Load
	A.4 Code Examples
	A.5 Parsons Problem

